
JOURNAL OF COMPUTATIONAL PHYSICS 46, 97-137 (1982) 

On the Solution of the Time-Dependent 
Inertial-Frame Equation of 

Radiative Transfer in Moving Media to 0(11/c)* 

DIMITRI MIHALAS 

Sacramento Peak Observatory, Sunspot, New Mexico 88349 

AND 

RICHARD I. KLEIN 

Berkeley Department of Astronomy, University of Calijbrnia, 
Berkeley, California 94720 and 

Lawrence Livermore National Laboratory, 
Livermore, California 94550 

Received October 16, I98 1 

A stable and efficient mixed-frame method has been formulated for the solution of the time- 
dependent equation of radiative transfer with full retention of all velocity dependent terms to 
O(u/c). The method retains the simplicity of the differential operator found in the inertial 
frame while transforming the absorption and emission coefftcients to the comoving frame 
keeping them isotropic. The method is ideally suited to continuum calculations. To correctly 
treat the time dependence of the radiation field over fluid-flow time increments, the velocity- 
dependent terms on the right-hand side of both the transfer and moment equations must be 
retained for consistency. 

Both explicit and two- and three-level implicit schemes have been explored for a variety of 
time-dependent problems and it has been concluded that an implicit-backward Euler scheme 
works best for propagating a radiation front, but that these schemes are essentially first-order 
accurate in the space derivative. A second order scheme was formulated with the method of 
lines which should provide higher spatial accuracy. The formulation naturally couples to 
hydrodynamics in both the Eulerian and Lagrangian formulations for application to 
astrophysical flows. 

It is shown that for uniform flow between the fixed and comoving frames, the solution of 
the Lorentz transformation of the integrated moments provides a powerful check on the 
formulation and solution. 

* Work performed under the auspices of the U. S. Department of Energy by the Lawrence Livermore 
National Laboratory under Contract No. W-7405.Eng-48. 
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I. INTRODUCTION 

In moving media, the equation of radiative transfer contains velocity-dependent 
terms, the largest of which are O(V/C), that account for aberration, advection, and 
Doppler shifts. In most existing solutions of transfer problems these terms are 
ignored, even though they clearly can be important in high-velocity flows. As we 
shall show below, the O(V/C) terms should be retained: (a) when characteristic time 
scales in the flow are so short that the transfer equation itself (as opposed to moment 
equations) must be treated as being explicitly time dependent, and (b) in order to 
obtain strict consistency among various forms of the energy equation for the 
combined matter-radiation fluid. We therefore wish to develop stable and efficient 
techniques that both account for the time dependence of the flow, and include all 
velocity-dependent terms to O(v/c). 

In formulating the transfer problem to O(u/c) one has two basic choices of 
reference frame: (1) the comoving-fluid frame (Lagrangian frame), or (2) an inertial 
laboratory frame. Both of these choices have advantages and disadvantages. 

A. The Comoving Frame 

Consider first the comoving frame. Here one is working in a noninertial spacetime, 
because different material elements (to which the coordinate markers are attached) 
experience accelerations with respect to one another. In this event one must introduce 
additional terms into the transfer equation to account for differential motions of the 
fluid over the path of a photon. Derivations of the appropriate comoving-frame 
equations have been given by Castor [3], using Lindquist’s [lo] formalism, by 
Buchler [2], using invariance of the photon-Boltzmann equation, and by 
Mihalas [ 131; the former two carry only O(u/c) terms and work on a true 
Lagrangian frame, the latter carries terms to all orders in (v/c), but works in an 
inertial spacetime that can be reduced to a Lagrangian frame only when terms of 
higher order than (V/C) are omitted. 

The basic advantages of the comoving frame is that it is the proper frame of the 
radiating fluid in the relativistic sense. Thus it is the natural frame for specifying the 
thermodynamic properties of the fluid. Moreover, it is the frame in which atomic 
absorption and emission coefftcients are isotropic, and in which partial-redistribution 
functions (e.g., for Compton scattering) are most easily written. The disadvantage of 
this approach is that it leads to complicated equations, containing derivatives with 
respect to time, space coordinates, angle coordinates, and frequency, which are hard 
to solve. Therefore, in practice, on a few solutions have been obtained, all for very 
simple one-dimensional flows; it is not at all clear at the present time whether, and 
how, this method could be applied in two- or three-dimensional flows. 

The comoving-frame equations are easily “solved” in the dl@iision limit where the 
photon mean-free path A, Q I, a characteristic length in the flow. Here one knows that 
the radiation field thermalizes and becomes isotropic so that one can discard the 
transfer equation and can use equilibrium values for the radiation-energy density E, 
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and the radiation pressure pR, and can write the radiation flux as F, = K,V T. One 
can then treat the fluid as having a total specific-energy density e = eg + (EJp), total 
pressure p = pg + pR , and a “conductive” energy flux with conductivity K, . 

When transport effects are important, however, a direct solution of the transfer 
equation is required. If one demands complete consistency, including all velocity- 
dependent terms, the solution is very difficult and must be carried out along curved 
rays representing the photon paths in the noninertial spacetime; in practice this has 
been done, thus far, only for one-dimensional steady expansion of a spherical medium 
(Mihalas et al. [ 161, Mihalas [ 131). For the case of line transfer the problem can be 
somewhat simplified because one can show that the frequency-derivative term is effec- 
tively amplified to O(U/U~,.,~~,,,), where other,,, is a characteristic thermal velocity in the 
line; here one can omit all O(v/c) terms in comparison with the (a/&) term, and a 
practical solution can be developed (Mihalas et al. [ 15]), at least for an expanding 
medium. The comoving frame is especially advantageous for this problem because 
one can choose, once and for all, a small set of comoving-frame frequencies to 
sample the line profile regardless of how large the flow velocities become. For 
continuum transfer the equations have been solved very approximately, on the 
assumption that the (a/&) term can be dropped; in practice, one then solves only the 
moment equations and uses a static, velocity-independent solution of the transfer 
equation to update variable Eddington factors (Falk and Arnett [5]). A more 
rigorous treatment is possible (Mihalas [ 131) but is too costly for inclusion into a 
hydrodynamics calculation. 

In summary, the comoving-frame formulation is physically elegant but 
computationally complex, and only limited progress has been made with it. We 
therefore examine other formulations. 

B. The Inertial Frame 

In the inertial frame, spacetime is flat, and the differential operator in the transfer 
equation remains relatively simple, containing only time and space derivatives. As a 
result, it becomes possible to handle more complicated velocity fields in the flow, and 
possibly to treat multidimensional flows, at least in an Eulerian framework. The 
fundamental disadvantage of the inertial frame is that material properties, specifically 
the absorption and emission coefficients become anisotropic because a photon with 
lab-frame frequency traveling in direction n has a comoving-frame frequency. 

and travels in direction 

vo=vy(l -n * v/c), (1.1) 

no = Wo)b - W>b - Vn - v/b + WI I. 
This anisotropy is particularly troublesome for spectral lines where a small 
frequency-shift induces a large change in opacity. The total bandwith that must be 
treated with good frequency resolution in, say, a line-formation problem can become 
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very large, the intrinsic linewidth ~(v~u,,,~~/c), where u,,, is the maximum flow 
speed; this can be quite costly. Worse, scattering integrals become two dimensional 
(angles and frequencies) even under the simplifying assumption of complete 
redistribution. Despite its disadvantages, this approach has been used to treat (time- 
independent) line-transfer problems. 

An interesting alternative to the approaches described above is a mixed-frame 
scheme in which one uses an inertial spacetime and expresses radiation quantities, 
angles, and frequencies in the lab frame, but expresses opacities and emissivities in 
the comoving frame via an O(v/c) expansion. This approach is discussed by 
Fraser [6], Pomraning [ 171, and Hsieh and Spiegel [8]. This approach retains the 
advantage of simplicity of the differential operator so that complex flows (e.g., 
shocks) and multidimensional geometries can, in principle, be handled, and gains the 
additional advantage that the absorption and emission coefficients are now effectively 
isotropic. The disadvantages of this approach are that it is difficult to treat scattering 
with partial redistribution, and the expansion procedure fails in spectral lines because 
of the rapid-frequency variation of the emissivity and absorptivity within the line 
profile. In addition, the viewpoint is fundamentally Eulerian, which is less convenient, 
at least for one-dimensional flows, than a Lagrangian formulation (though, as we 
shall see, it is possible to recast the equations into Lagrangian form). 

Despite the fact that the mixed-frame scheme was one of the first to be 
formulated, there seems to have been little work devoted to actually solving the 
equations, except in the diffusion limit (Hsieh and Spiegel [8]), and the approach 
remains essentially unexplored. Our goal in this report is to demonstrate that prac- 
tical schemes can be developed for treating he hybrid time-dependent transfer 
equation including 0(0/c) terms both stably and efficiently, and to sketch how they 
can be coupled into radiation-hydrodynamics calculations; computations using these 
methods for actual flows remains work for the future. 

In § II we shall develop the mixed-frame equation of transfer and the frequency- 
dependent and frequency-integrated moment equations. In Q III we shall consider the 
relative sizes of the terms in the transfer equation and the requirement to keep all u/c 
terms to obtain exact consistency with the energy equation for a radiating fluid. In 
4 IV we shall discuss our computational approach in Feautrier variables and we 
include a 2nd-order formulation. We shall present several schemes for the method of 
solution in 5 V and provide test calculations. In 0 VI we shall indicate how the 
transfer equation to O(v/c) can be coupled to the hydrodynamic equations in both a 
Eulerian and a Lagrangian formulation. 

II. THE TRANSFER EQUATION AND ITS MOMENTS 

A. The Transfer Equation 

The transfer equation for radiation of frequency v traveling in direction n in a 
moving medium is 
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( + $ + I?’ 5 
) 

Z(n, v) = q(n, v) - tc(n, v) Z(n, v), (2.1) 

where q is the thermal emissivity and K the true absorptivity of the material (i.e., 
scattering has been omitted). Our approach is to leave both the differential operator 
and the specific intensity in the inertial frame but to express the material properties 
on the right-hand side in the fluid frame. 

By demanding Lorentz invariance of the transfer equation Thomas [ 191 showed 
that the general transformation relations for K and v between the inertial and 
comoving frames are 

& v) = h/4 Md (2.2) 

and 

0, v) = WhJ*~&)~ (2.3) 

where quantities with subscript “0” are measured in the fluid frame. Consider only 
the low-velocity limit, and, henceforth, retain terms only to 0(0/c). Then 

(v/vo) = 1 + n . v/c, (2.4) 

K(n, v) = K&) - (n - v/c)[q+) + v(hJav)], (2.5) 

and 

r(n, v> = rl&> + (n - vlcWrl&) - v(%Pv)l. (2.6) 

Using (2.5) and (2.6) in (2.1) we obtain the mixed-frame transfer equation 

( + f + d 5 
1 

Z(n, v) = qo(v) - q(v) Z(n, v) 

+ 
( ) 
+ {2q,(v)-v$+ [tcD(V)+v~]Z(n,v)l, (2.7) 

B. SCATTERING TERMS 

Scattering terms in the mixed-frame formulation are complicated; a detailed 
discussion is given by Fraser [6]. Here we shall consider only Thomson scattering, 
which we take to be grey, coherent, and isotropic in the comoving frame. The sink 
term to be added to the right-hand side of (2.7) is simply 

-a@, v) Z(n, v) = -(q/v) o,Z(n, v) = -uo( 1 - njv’/c) Z(n, v). (2.8) 
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In the comoving frame the source term is 

hence, in the observer’s frame 

where we now regard n and v as fixed, and v,, and n, on the right-hand side to be 
given by (1.1) and (1.2). That is, 

v,=v(l-n-v/c). (2.11) 

We now wish to re-express the integral in terms of the inertial-frame radiation field 
and inertial-frame angles. Thomas 1191 showed that, in general, 

Zdn,, vo> = (vO/v’)3Z(n’, v’) (2.12) 

and 

Here 

do,, = (v’/v# dw’. (2.13) 

v’ = v,(l + n’ . v/c) = v[ 1 + (n’ . v - n . v)/c], 

where the second equality follows from (2.11). Thus O(u/c), 

(2.14) 

4) - Z&r,, v,,) do, = Z(v)+:(nr.o--nev)g dw’ 
I 

= +i(n’.v-n-v): do’ 
I 

= 47t J(v) - (2.15) 

Here we have introduced the mean intensity 

J(v) = (1/4n) 4 Z(n, v) dw (2.16) 

and the Eddington flux 

H’(v) = (1/4n) $ Z(n, v) rzi do. ((2.17) 
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Thus from (2.8), (2.10), (2.1 l), and (2.15) we find that to O(V/C) the transfer 
equation including Thomson scattering becomes 

+ $ + qj & Z(n, v) = qo(v) + aoJ(v> - [ K~(v) + a,] I(4 v) 

+ nj,j 
( )I C 

2rl,(v)-“~+o$J(“)-v~ 1 
+ [Ko(“)+“%+o o]Z(n,v)I - (T)[Hj(v)-vg]. (2.18) 

It is apparent that the scattering term significantly complicates the problem because it 
introduces moments of the radiation field and their frequency derivatives into the 
problem, so that the transfer equation is an integro-partial differential equation. 

C. Frequency-Dependent Moment Equations 

We obtain frequency-dependent moment equations by integrating (2.18) over solid 
angle against powers of n. Thus integrating over dw we obtain the zeroth-moment 
equation 

1 aJ(v) + aHi 
- = rlo@) - ho J(v) + 

ale, u,H’(v) -- 
c at axi ~c,(v) + v av 

1 
c 

Similarly, integrating against ni dw and noting that 

47r 
ninj &, = - 6” 

3 

we obtain the first moment equation 

1 aHi + aK’j(v) 
-at C 

- = -[K~(v) + oo] H’(v) 
a2 

I 
2y,(v) - v 2 + 00 

KO(V)+V~+oo 1 
where the tensor K” is defined as 

K”(v) = (1/47r) $Z(n, v) ninj dw. 

ujKij(v), 

(2.19) 

(2.20) 

(2.21) 

(2.22) 



104 MIHALAS AND KLEIN 

D. Frequency-Integrated Moment Equations 

Next, by integrating over frequency we obtain frequency-integrated moment 
equations, which are the expressions that appear in the equations of radiation 
hydrodynamics. From (2.19) we obtain after integration by parts the radiation-energy 
equation 

L3ER cYF’ 
F+a,,=4n 

I ; [rlo(v) - do J(v)1 dv 

tco(v) + v 2 - u. 1 F’(v) dv. (2.23) 

Similarly from (2.21) we obtain the radiation-momentum equation 

1 8F’ CYPf 1m -- 
c2 at +axi=-c 0 f 

[rco(v) + a,] F’(v) dv 

Here we use the radiation-energy density 

E,k%=~ mJ(v)dv, 
C i c 0 

(2.24) 

(2.25) 

the radiative flux 

F = 4nH = 471 
I 

O” H(v) dv, 
0 

(2.26) 

and the radiation-pressure tensor 

P; = (47r/c) K” = (47c/c) jm K”(v) dv. 
0 

(2.27) 

Although these equations specify the dynamics of the radiation field in principle, in 
practice they suffer from the usual closure problem. Approximate closure schemes in 
the diffusion limit have been developed by Thomas [ 191, Masaki [ 111, and Hsieh and 
Spiegel [8]. But in the optically thin limit, only by a solution of the full angle- 
frequency dependent Eq. (2.18) can one close the system (2.23) and (2.24), say in 
terms of variable Eddington factors. 
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E. Grey Material 

We can significantly simplify the problem for grey material, in which K,,(V) = K,,, a 
constant. We further assume LTE so that Q,(V) = &,B,(T,), where T,, is the material 
temperature in the comoving frame and B, is the Planck function. Then the grey- 
transfer equation is obtained by integrating (2.18) over frequency, whence we have 

+ (njv’/C)[(K, + 0,) Z(n) + 3(&B + O,J)] 

- (2u,/c) vjH’. (2.28) 

Taking the zeroth-angular moment of (2.28), we find the radiation-energy equation 
for grey material 

8E, 3F’ 
at+ax’=4n~oB-~Oc&+ c tKll - ‘0) viFi , 

and by taking the first moment, we find the radiative-momentum equation 

1 8F’ CYP! -- 
c2 at +ax’ 

+q,+q,)Fi+ (F + v% ); 

(2.29) 

Alternatively, these grey-moment equations can be derived from Eqs. (2.23), (2.24) 
by inspection. To O(v/v), Eq. (2.29) agrees with Eq. (4.11) of Hsieh and Spiegel [8], 
and (2.30) with their Eq. (4.12). 

III. IMPORTANCE OF (v/c) TERMS 

Let us now investigate the circumstances under which the (v/c) terms in the 
equations should be retained. The basic conclusion is that: (1) they are required for 
consistency if the time dependence of the radiation field or its moments is- at all 
important, and (2) various forms of the energy equation are consistent only if the 
(v/c) terms are retained. 

A. Relative Sizes of Terms in the Transfer Equation 

First consider the order-of-magnitude relative sizes of terms in Eqs. (2.28)-(2.30), 
ignoring all scattering terms. In making estimates we shall use the fact that in the 
free-flow limit JZ H k K, hence E, M pR and F % cE,. In the diffusion limit 
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J= 3K= B, and H < J; in this limit the Lorentz transformation for the flux [cf. 
Eq. (3.2)] shows that F - uE, + F,, where I;,, is the flux evaluated in the comoving 
frame. 

Starting with the transfer equation (2.28), we see that for time-increments 
appropriate to fluid flow, i.e., At -Ax/v, the a/at on the left-hand side is obviously 
0(0/c) relative to the spatial derivative terms. Therefore, if time dependence is 
important, the solution should be carried out to O(v/c). On the right-hand side, in the 
free-flow limit all terms beyond the usual absorption and emission terms are 0(0/c) 
relative to those terms, and thus should be retained for consistency with the (a/at) 
term. In the diffusion limit I+ B[ 1 + O(L/Ax)*], w h ere A is the photon mean-free- 
path and Ax is a characteristic flow length. Because il@ Ax, the absorption and 
emission terms cancel almost identically, and become O(k/Ax) relative to the spatial 
derivative. In contrast, the u-dependent terms are of order (u/c)(Ax/L) relative to the 
spatial derivative, which shows that: (1) they are much more important than the 
(a/at) term, and (2) that they can dominate the absorption-emission terms if 
(~/c)(Ax/,l)~ > 1. We therefore conclude that in the diffusion limit it is essential to 
retain the u/c terms on the right-hand side. 

For the zeroth-moment equation, in the free-flow limit we see that on the left-hand 
side the term aE,/at is O(v/c) relative to V . F. On the right-hand side the usual first 
two terms are of order CKE~ while the last is of order UKE~ and hence of O(v/c) 
relative to the other two. Therefore, a consistent time-dependent solution is obtained 
only if all terms are retained. In the diffusion limit both terms on the left-hand side 
are of the same order, namely, vE,/Ax. On the right-hand side, the difference 
between the first two terms is of order dE,/Ax’ and the last is of order v2E,/d. 
Thus, relative to the spatial and time derivatives the absorption-emission terms are 
0[ (c/v)(L/Ax)] while the last term is O[(u/c)(Ax/k)]; clearly the v-dependent term 
becomes important for opaque material (A < 1) and moderate flow-speeds, i.e., when 
(v/c)(Ax/,l) - 1 or greater. 

For the first-order moment equation, in the diffusion limit all three terms on the 
right-hand side are of the same order, namely, (uKE,/c) = (vE/cL), and hence, all 
must be retained. On the left-hand side the term c-‘(aFlat) is only O(v2/c2) relative 
to (aP,/ax) and, hence, can be dropped in the diffusion limit. In the free-flow limit, 
however, the @F/at) term becomes O(u/c) relative to (#,/ax), as do the u- 
dependent terms on the right-hand side relative to K,,F/c. We therefore, again 
conclude that consistency is obtained only if all terms are retained in the solution. 

In summary, if one wishes to treat the time dependence of the radiation field over 
time increments appropriate to fluid flow correctly, then the velocity-dependent terms 
on the right-hand side of the transfer and moment equations must be retained for 
consistency, for they are of the same order, or larger, as the a/at term. If we are 
interested in a pure radiation-flow problem the appropriate time increments are 
At-Ax/c. Here the time-dependent terms are O(1) relative to the spatial derivative. 
Unless we specifically demand a solution accurate to O(u/c), the velocity-dependent 
terms on the RHS may be omitted. 
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B. Consistency of the Energy Equation 

In the energy and momentum equations (2.29) and (2.30) there are two kinds of 
O(v/c) terms: (1) the velocity-dependent terms on the right-hand side and the (a/at) 
terms on the left-hand side, and (2) those that discriminate between radiation quan- 
tities measured in the comoving and inertial frames. By Lorentz transformation one 
finds for the latter 

E, = E,, + 2ViF6/C2 + O(V~/C’), (3.1) 
Pi = F< + E,,v’ + VjPio + O(V~/C~), (3.2) 

and 

Pi = Pi0 + (v’F’, + v’F;)/c’ + O(vz/c2). (3.3) 

These transformations apply only for the frequency-integrated moments. We shall 
now show that if and only if we retain all these O(v/c) terms can we obtain strict 
consistency among various forms of the energy equation for the combined radiation- 
material fluid. 

The equation for overall energy conservation for the radiating fluid, correct to 
0(11/c) is 

f @e + $JV’ + ER) + -& [@e + $w’ + p) vi + F’] = Vif’ 
I 

(3.4) 

or 

8E, 8F’ 
p+(e+jv2)+$(pvi)=vifi-- 

at +P (3.5) 

where/’ represents external forces on the radiating fluid [20, Eq. (11); 17, Eq. (9.84); 
12, Eq. 15-l 191. Here e is the specific internal energy of the fluid, p is the fluid 
pressure, p is the fluid density, and f i is the force per unit volume acting on the fluid. 

The momentum equation correct to O(v/c) is 

(3.6) 

[20, Eq. (8); Eq. (15-log)]. Note in passing that Pomraning [ 17, Eq. (9.83)] omits 
the last term on the right-hand side of Eq. (3.6). 

Forming the product of (3.6) with vi we obtain the mechanical-energy equation 

p~(+v2)=vifi-vi$-vi ’ aFi +- 
( 

8P{ -- 
c2 at ati 1 

+ O(v 2/c2), (3.7) 
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then subtracting (3.7) from (3.5) we obtain the gas-energy equation 

p [g+p$ (+)]=ui (-$$+s) - (%+$), (3.8) 

where we used the continuity equation (Dp/Dt) = -p(&‘/ax’). Now using (2.29) and 
(2.30) in (3.8) we obtain 

(3.9) 

then using (3.1) we obtain 

De D 1 
p Dt+pDt p ( )I =K,cE,-‘~~K,B = 4XK,(J,- B), (3.10) 

which is the correct gas-energy equation in the comoving frame [Castor [3, Eq. (43)]. 
Had either the (V/C) term on the right-hand side of Eq. (2.29) or the (v/c) terms in 
Eq. (3.1) been ignored, this exact reduction would not have occurred, and we would 
have been left with an extra term of the form (K,,u//c), which is the rate of work 
done by radiation forces on the material. 

Similarly, starting from the zeroth-moment equation (2.29), we can derive the first 
law of thermodynamics for the radiation field. Thus using Eqs. (3.1)-(3.3) in 
Eq. (2.29), and noting that for time intervals At - Ax/c the (u/c) terms in (3.1) lead 
to terms of O(~*/c2) in aE,/i?t), we find 

= ‘br~,,(B -Jo)- (KO + a,)(uiFi/c). 

Grouping terms, invoking continuity, and using Eq. (2.30) to write 

+ O(u2/c2) 

we find that Eq. (3.11) reduces to 

D E,, 
PDt p 

(-)+Py.~=lrrh~~(B--J,)-~ 

(3.11) 

(3.12) 

(3.13) 

which is the first law of thermodynamics for the radiation field [of Castor [3, 
Eq. (35)]]. The first term is the rate of increase of radiant energy per unit mass. The 
second is the contraction of the radiation-stress tensor with the velocity-gradient 
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tensor and, hence is the rate of work done by radiation pressure; this becomes more 
evident for an isotropic field in which 

P” = PRO 6” RO , whence P&(&.J,/~x’) + PRo(~ui/LJxi) = pP,,[D( l/p)/Dt]. 

The terms on the right-hand side are the net rate of delivery of energy by the material 
to the radiation field minus the net rate of energy flux out of a volume. Again, if we 
had omitted any (v/c) terms in Eqs. (3.1~(3.3) or on the right-hand side of 
Eq. (2.29), the reduction to Eq. (3.13) would not have been exact, and again the error 
have been proportional to the rate of work done by radiation forces on the material. 
(See also the discussion in [3, p. 7901). 

Finally, the sum of (3.10) and (3.13) give the first law of thermodynamics for the 
combined radiation-material fluid. 

In summary, exact consistency of various forms of the energy equation for a 
radiating fluid requires retention of all v/c terms affecting the radiation field. 

IV. COMPUTATIONAL APPROACH 

A. Preliminaries 

To investigate computational methods for solving the transfer equation including 
time- and velocity-dependent terms we simplify the problem by assuming: (1) one- 
dimensional planar geometry, (2) no scattering, and (3) LTE so that qo(v) = K~(V) B,. 

For economy of notation we shall henceforth drop the affix “0” on the material 
properties. The basic transfer equation follows from Eq. (2.18) and is 

where 

t, = K, + V(8K&h’), (4.2) 

and 

?j” E 211” - v(aq”/av). (4.3) 

Here, I, = Z(Z,,U, v), p = cos 19, where 8 is the angle between the direction of a ray and 
the positive z axis, and p = (u/c), where u is the velocity along the z axis. The 
corresponding equation for spherical geometry has the same right-hand side, and on 
the left-hand side ,~(al,/az) is replaced by ~(81,/ar) + r-‘(1 -~*)(81,/&) or, 
equivalently, gllr2)(8/&)(r21,) + (l/r)(a/@)[ (1 - p2) Z,]; we shall not discuss 
spherical geometry further in this paper. 
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B. Multigroup Equations 

It is trivial to derive both frequency-dependent and frequency-integrated moments 
(4.1), but before doing so it is worthwhile to simplify to a multigroup formulation. 
Thus, on (vk, vk+ ,) let the opacity have a constant value K, = K~. Then, integrating 
(4.1) over (vk, v~+~ ) and assuming LTE we have 

+$ +,U $= KL(Bk -Ik)+@(KkII, + ?j-& (4.4) 

where 

B,= B, dv 

and 

tjk E I”” Ti,dv = 3 I”“” r,dv+ [~~+~tlt~~+,)-~~~tv~)l. 
“k 

(4.5) 

(4.6) 

(4.7) 

In Eq. (4.7) the term in the brackets vanishes identically when the integration range 
extends over (0, co). To achieve this in the multigroup formulation we have two 
options: (1) we could write q(v,J = $(K~-,B,-, + K~B,), in which case we have 

fjk= ~K$,+~[v,+,(K$,+K k+lB,c+A- v&~-IB~-I +K$,)l=3K,&, (4.8) 

(2) we would simply drop the term in the brackets, which will be small if (vk- i - v,J 
is not too large. In either case we use the notation of Eq. (4.8) to write, finally, 

+ 2 + ,U f$ = @Bk - zk) + ,$Kk(zk + 3B”,), (4.9) 

which yields the zeroth-moment equation 

1 8J, aH, -- + - = K,@~ - Jk) + ,8~~ H, c dt az 

and the first-order moment equation 

1 aH, aK, -- 
c at + az - = -K~ Hk + PKJK~ + a,J. 

(4.10) 

(4.11) 

The sum of (4.10) and (4.11) over all k gives integrated-moment equations. In the 
limit of a single group, K = constant on v = (0, co) and we recover the grey equations. 
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C. Transformation to Feautrier Variables 

Equations (4.10) and (4.11) could be taken as the basic equations to be solved. 
But, of course, they suffer from the closure problem because two equations contain 
three moments. To achieve closure we could introduce the variable Eddington factor 
fk defined such that 

4 = fk Jk. (4.12) 

One must then either estimate for fk from some ad hoc geometric relationship, 
determine fk from an approximate flux-limited theory [9], or compute fk, which 
requires a solution of the full angle- (and frequency-) dependent transfer equation 
(4.9). For strict consistency to O(u/c), only the latter course is open because an 
attempt to specify fk a priori is likely to introduce errors as large as (or larger than) 
the other terms we wish to retain, 

The standard approach to solving Eq. (4.9) centers on writing stable-difference 
formulas in space and time. A variety of schemes have been developed; see, e.g., 
Richtmyer and Morton [ 18, Chap. 91. A difficulty with these schemes is that they 
often yield inaccurate values for the flux because one must compute 1(+~) and 1(-p) 
separately and then subtract in order to find H. In what follows we shall use an alter- 
native approach widely used in astrophysics that recasts the transfer equation into a 
form that closely parallels the moment equations. 

We can obtain a stable and economical solution of (4.9) by transformation to 
Feautrier variables [4]. Define the mean intensity-like variable 

j,@) = f M-P) -I- Id-P)l (O<PFr 1) (4.13) 

and the flux-like variable 

hkOl) = i [Zk(W) - Z/A-P)1 (O<PU 117 (4.14) 

then taking the symmetric and antisymmetric average of (4.9) for f,u we obtain 

and 

+ 2 + p 2 = -xkh, t ,u/3Kk(jk + 3&J. 

(4.15) 

(4.16) 

This system of equations has several interesting properties. First, it strongly 
resembles the moment equations (4.10) and (4.1 l), but unlike those equations this 
pair of equations closes, i.e., contains only j@) and h@). Of course, it is angle 

581/46/l-8 
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dependent, and must be solved for various values of ,u. Second, the moments J, H, 
and K are directly calculable fromj and h as 

Jk = i ’ .hW & (4.17) 
0 

H, = I ’ h&k & (4.18) 
0 

and 

(4.19) 

Because h, appears explicitly in the equations, it can be calculated accurately. Hence, 
it is possible to obtain accurate values of the flux Hk without severe numerical 
cancellation, as would occur if one solves Eq. (4.9) directly for Ik(+~) and Zk(-+) and 
then subtracts before integrating over ,u. Third, as we shall show below, for /3 = 0 
these equations yield both the wave equation and the time-dependent diffusion 
equation in the optically thin and thick limits, respectively. 

As we shall show in 0 V, one can immediately write stable-difference approx- 
imations for (4.15) and (4.16); however, these in general, have only first-order 
accuracy in the space derivatives when nonuniform stepsizes are used, and/or the 
opacity varies as a function of depth. In many applications it is important to achieve 
second-order accuracy in the space derivatives, particularly in static media, or where 
there are large scattering terms (or departures from LTE). To see why this would be 
so, we notice that in a static medium (dH,/dz,) = J, - S,, where dz, = -~,dz and 
S, is the source function. Suppose S, has a scattering term and is of the general form 
S, = (1 - E) J, + EB,. Then 

d’K,/ds; = E(J, -B,). (4.20) 

At great depth in the atmosphere K, + jJu, hence, (4.20) implies that 

J, = B, + (fs)(d’J,/dr;). (4.21) 

From (4.20) or (4.21), we see that the difference (J, -B,), which enters directly into 
the equation of energy balance [cf. Eq. (3.10)], i.e., the equation of radiative 
equilibrium for a static medium depends explicitly upon the second derivative of J,. 
Errors in this derivative lead directly to errors in energy balance. Moreover, if we 
attempt to solve (4.21) for J, as a differential equation, then errors in $(d*J,/dzt) 
compete directly with the thermal source term EB, which can be quite small when E is 
small; such errors are thus equivalent to spurious source terms, and can completely 
falsify the solution for J,. Indeed, it is failure to obtain an accurate representation of 
the second-derivative terms that lies at the root of most difftculties encountered in 
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numerical attempts at solving the transfer equation itself (i.e., not analytically 
reduced to a diffusion equation) in the diffusion regime. 

To obtain a second-order scheme we proceed as in the method of lines, and 
immediately discretize the time derivatives while leaving the space derivatives in 
continuous form. As we shall find in 5 V, a backwards time difference is always 
unconditionally stable, so we center both (4.15) and (4.16) at t” and (l/c)(%,/at) = 
(h: - h[t- *)/cdt and similarly for (aj,/at). 

For economy of notation we define y = (l/c&), and drop the superscript n, writing 
h; = h, and hi-’ G hi. We then have 

lu(W~z) = KkB, - (Kk + r)j, + /@Kkh, + ti, (4.22) 

and 

iu(aj,/az) = -(Kk + I’) h, + ill&(jk + 3%) + @k. 

Now defining dz, = -(ok + y) dz and 01~ = ~k/(~k + y), we obtain 

.4ahkark) = jk - akBk - iuPakhk - (I- ak) j; 

and 

(4.23) 

(4.24) 

GYkPrk) = hk - clpak(jk + 3Bk) - (1 - ak) 4. (4.25) 

Solving (4.25) for h, and substituting into (4.24) we obtain the second-order system 

= l-p2- 
[ 

a@ak> 

ark 1 jk - akBk - (1 - ak)O’; +i@akhk) 

-P T& [%@c$B”, + (1 - ak) &I + O@‘) 

which is of the general form 

(4.26) 

(4.27) 

Because/I< 1, akz 1, hence a,< 1, b,% 1, and Sk%Bk. 
In the limit of a static medium @I = 0), Eq. (4.27) reduces to the standard second- 

order form used extensively in stellar atmospheres work (cf., [ 12, Chaps. 6, 7, 12]), 
where it is known to be accurate and highly stable in both the free-wave and diffusion 
regimes. We discuss difference approximations to (4.26) in $ V. 

Both the first-order system (4.15) and (4.16) and the second-order equation (4.27) 
require boundary conditions. Physically this means we must assume that I- = I(+) 
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at the upper boundary and I+ c I(+,u) at the lower boundary are given. In some 
cases one can the diffusion approximation at the lower boundary and write I, = 
B - (,u/~)(~?B/c?z). The mathematical expression of the boundary conditions depends 
upon the form of the differencing scheme used and will be discussed in 9 V. 

D. The Free- Wave Limit 

The free-wave limit is obtained when K = 0. Equations (4.15) and (4.16) then yield 

1 a’j, 2 ax =o 
---P F c2 at2 

and 

1 a2h, 2 a24 --- 
c2 at2 

--.--.=I) 
p az2 

(4.28) 

(4.29) 

which are the standard wave equations. The solutions are of the form 

j, (or hk) = Af,(z + wt) + B&G - wt), (4.30) 

i.e., the wave propogates with velocity c along a ray whose angle-cosine is f,u with 
respect to the normal. 

E. The Diffusion Limit 

In the diffusion limit the term (l/c)(ah/&) in Eq. (4.16) is O(v2/c2) relative to 
p(aj/&). Furthermore, because we expect p 4 1 at great depth we drop the a- 
dependent terms and substitute h = -C,u/rc)@j/&) into (4.15), which yields 

1 a!, --=- 
c at + q(Bk - j,) + O@). (4.3 1) 

Equation (4.31) is of the general form (af/at) = V2f+ s and, hence, is essentially a 
time-dependent diffusion equation with a source term. 

V. METHOD OF SOLUTION 

We now examine various differencing schemes for solving Eqs. (4.15) and (4.16) 
or Eq. (4.27). In all cases we assume for the present that material properties and the 
velocity-field are given, so that we are performing only a formal solution for all 
angles and frequencies. A sketch of how the transfer problem can be coupled to 
hydrodynamics will be given in $ VI. 
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A. First-Order Schemes 

Consider first the first-order equations (4.15) and (4.16). Discretize the problem by 
dividing the material into D slabs with boundaries located at {Z,}, d = l,..., D + 1, 
with Z, > Zd+,, i.e., d = 1 is the “top” of the medium and d = D + 1 is the 
“bottom.” Further, introduce a discrete set of angles {cl,}, chosen according to some 
quadrature scheme. Frequencies have already been discretized into groups by the 
mesh {vk}. Material properties and the mean intensity-like variable j(v) are specified 
at cell centers Zd+ ,,?, d = l,..., D. Velocities and the flux-like variable h(v) are 
specified at cell boundaries Z,. With this choice of centering the radiation-energy 
density and pressure are located at the same position as the material-energy density 
and pressure, while the radiative flux, and hence, the radiation force, will be 
computed at cell boundaries, where the fluid accelerations are to be calculated. For 
economy of notation we shall reference only depth levels and time levels t”, and 
suppress reference to angles p,,, and frequencies vk in assigning subscripts and 
superscripts to variables. 

1. An Explicit Scheme 

Centering the variables jz+ ,,* at times t” and the variables hz+“* at times 
t ‘+I’* = f(t” + t”+ ‘) we can write a standard leapfrog representation of (4.15) and 
(4.16) as 

and 

h"+1/2-h"-1/2 
d d jL,2 -jS+112 

cdt” +’ AZ d-1/2 

= - $K’#;-“* + h :“‘*I + &[3(Wi + W>Zl (d = 2 ,..., 0). (5.2) 

Here At” E {(At”-‘/* + At”+‘/*), n+1/2 - 1. 
Kdty2 = 2 ii+,,2 + 6:,2), B::::: = 

f(Bz+ 1,2 + Bii i,,), and /3: = ~(J?~-“2 + p~t1’2). The trrn AZ, is the thickness of the 
dth slab and AZd-,,, G f(AZdml + AZ,). Further, K: E (AZ,- I KS-,/~ + AZ,K:, ,,2)/ 
(AZ,-, + AZ,), and similarly for (KB)~ and (Icj):. 

To apply the boundary conditions we use Eq. (5.2) over the half intervals from cell 
edge to center for the first and last slab and make use of the identities j; = 
ZI +h;=Z!! +f(h:-“*+h :+I’*) and ji,, = Z: - hg,, = Z: - f(hE;‘,‘* + hi+,‘,‘*). 
We then have 
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hn+1/2 _ h”-l/2 
1 1 

c At” 
+ ~ Z’L + ((h!-“’ + hy+ 1’2)/2) - j:,2 

AZ, 12 
= -/cI;,2(h;- “2 + h; + I”)/2 

+,$:K;,2[3B:,2 +I”_ + (h:-I”+ h:+“‘)/2], (5.3) 

and 

h”+ I/z _ h;;;/’ 
D+l +P 

ji+ ,,2 - 1: + (hi;‘/’ + hi::)/2 
cdt” AZ, 12 

= -K;+ ,,2(h;;;‘2 + h;‘,‘,“)/2 

+PP~+~G+,,~[%+,,~ +I: - (hI;:‘2 + hii+,‘/2)2]. (5.4) 

Equation (5.1) provides D equations for updating the D values of jzz :,2, and 
Eqs. (5.2)-(5.4) provide D + 1 equations for updating the D + 1 values of hz+1’2. It 
should be noted that in the updating procedure one can vectorize the solution either 
over the depth-grid, or over all angles and frequencies. 

Having calculated the solution for all angles, the moments for frequency group k 
are 

pl+ I/2 
d.k = 4nHii’/2 = 4n c a,,,,u, hi,‘,,‘i2, (5.6) 

m 

and 

where the a, are appropriate angle-quadrature weights. 
The von Neumann local stability analysis shows that (5.1) and (5.2) are stable for 

cAt < AZ/,u, (5.8) 

i.e., the usual Courant condition. Although this scheme is easy and cheap for 
radiation-flow problems where the relevant time steps are indeed those given by (5.8), 
it is clearly less useful for fluid-flow problems where one would prefer time steps of 
the order of Ar - AZ/v, where v Q c is the fluid velocity. Further, even though the 
stability analysis does not indicate a restriction on the optical-depth step size, the fact 
that one can recast the system into a diffusion equation [cf., Eq. (4.31)] suggests that 
in the diffusion limit a more stringent time-step limitation of the form At < k(AZ)’ 
may come into operation. In either case an implicit method is indicated. 

2. Two-Level Implicit Schemes 
To obtain an implicit scheme, we employ the same spatial centering described 
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above, but put all variables at a common time level. We then can represent (4.15) 
and (4.16) as 

and 

II+1 h, -hi ji%2 
.ntl 

,eAt”t’/2 +ep 
-Id+ ll2 j:- 1,2 - j:, 1/z 

AZ + (1 - ek 
d-1/2 

Az 
d- If2 

= -,;+‘h;+’ - (1 -e)~~h~+e~~~+‘[3(~B)~+l +(~j);+‘] 

+ (1 - e)&PW)Z + WY (d = 2,..., D). (5.10) 

Here auxiliary quantities such as ud, (KB)~, and (uj), are defined as in the explicit 
scheme. Boundary conditions are obtained by again applying (5.10) over half 
intervals of the two end cells. One finds 

= -8K;;1h;t’ - (1 - 0) KJ12hy 

and 

h n+l -h” en+ 1 
Dtl Dtl + ePJDtl/2 -Z”t” + h;+,: A+ 1,2 - ZI + hi+,‘, 
c At” t l/2 AZ, 12 +(1-e& 

4ZDP 

=-~K~‘,~,,h~~~-(i-~)K~,,,,h~,, 

+ e&‘,: K;;:,,(~B;;:,, + I:” - h;;:) 

+(1--8)~~:,t,K~t,/2(3B~-,+Z:-h::t,). (5.12) 

For 8 = 1, one has a fully implicit or backward Euler scheme; for t9 = $ one has a 
Crank-Nicholson scheme. A von Neumann local stability analysis shows that both 
schemes are unconditionally stable. 

If we choose a solution vector 

X = (hl,j3,2r h 29-.v h,, .L 1/29 b+ A9 (5.13) 
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then at each angle p, and frequency vk the system (5.9)-(5.12) is of the form 

T,,X,, = Rm, 5 (5.14) 

where T,, is a tridiagonal matrix of dimension (20 + 1) and R,, is a vector of 
length (20 + 1). The computational effort to solve the system scales as c(2D + 1). 
Because the solution is recursive it cannot be vectorized over the depth grid. Both the 
setup and solution, however, can be vectorized over all angles and frequencies, which, 
in effect, are treated in parallel. In a scalar machine the total computing effort scales 
as cMK(2D + l), where M is the number of angles and K the number of frequencies. 
In a vector machine the coefficient MK is reduced by some large factor depending on 
the length of the vector registers. 

We can write Eq. (5.9) in the form 

Ddhztl + E,hiz t = Fd jzz :,z + G, (d = l,..., D) (5.15) 

and Eq. (5.10) in the form 

A,jzT:,, + B,jii:,, = Cdhz+’ -t L, (d = 2,..., 0). (5.16) 

The boundary conditions are also of the form of Eq. (5.16) with A, = 0 in the upper 
boundary condition and Bd+ 1 = 0 in the lower boundary condition. In general, A,,, 
B,, C,, D,, E,, and Fd are matrices of oreder (A4 x M) if scattering is included. In 
the current nonscattering problem, these quantities are simply scalars and can be read 
by inspection from Eqs. (5.9)-(5.12). The quantities G, and L, are vectors and 
contain all known information from the previous time step in t”. 

In practice, we solve (5.15) and (5.16) by the recursion relations 

h Z = Vd+JLZi,2 + Wd+, 
.?I+ 1 J - uci+,,&:f + Td+L,2, d+l/2 - 

(5.17) 

(5.18) 

where 

u d+I/2=(Fd-DdVd)-‘Ed (5.19) 

Vd=(Cd-AdUd-1,2)-‘Bd (5.20) 

wd = cc, -AdUd-,,2)-‘@dTd-,,2 - Ld) (5.21) 

T d+,,2=(Fd-DdVd)-1(DdWd-Gd). (5.22) 

The solution starts at d = 1 with A, = 0, and we then recursively construct all 
composite quantities V, W, U, T for all depth points until we reach d = D + 1, where 
B d+ i = 0. The bottom boundary condition implies h,, I = W,, , . We then back 
substitute using Eqs. (5.17) and (5.18) to obtain jszt,, (d= l,..., D) and hz” 
(d = I,..., D + 1). 
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An alternative solution to the coupled system is to develop a tridiagonal system in 
just one variable. Direct substitution of Eq. (5.16) into Eq. (5.15) yields 

t&G1&M+:,2 + P,C,% +E&Ad-KJ.6:;,2 + &Cd’&)&& 

= (Dd + Ed) C, ‘~5, + G,. (5.23) 

We solve this tridiagonal system for jz: i/Z and use Eq. (5.16) to obtain 

h :+ ’ = C,‘(A,j:t ;,* + Bdj;; ;,2 - Ld). (5.24) 

Having obtained the solution, moments can be constructed as in Eqs. (5.5)-(5.7). 

B. The Second-Order Scheme 

Let us now briefly examine the second-order system (4.26). The primary goal is to 
obtain a second-order accurate representation of the differential operators on the left- 
hand side. Let At, and Atd+, denote the r-increments between d - f and d t f, and 
d + f and d t 4, respectively, and let AZ,, ,,* 5 f(Ard t At,, i). Represent the depth- 
variation of j by a second-order Lagrange-interpolation polynomial. Then second- 
order formulae for (8j/&‘) and (aj/ar) evaluated at d t f are 

- & (-& t -&) 
d+ I 

Jdt 312 

+ AT,+ I AZ,+ ,,2 

We> 
“djd + 312 

d+1’2= 2At,+,,,As,+, + 

“dtl . 

2Ard+ ,/2 AZ, Jd- I/*’ 

(5.25) 

(5.26) 

The coefficient of (aj/&) in Eq. (4.26) and the derivatives on the right-hand side 
should, in principle, also be obtained to second-order accuracy. Depending on the 
centering of the various variables this may require careful interpolation, using, e.g., 
splines of other high-order formulae. 

The final system is tridiagonal in form for each angle-frequency choice, and both 
setup and solution can be vectorized over angles and frequencies. Note that there are 
now only D variables (the run of j, with depth) in each system. Once the j,, ,,Z’s 
have been computed, the fluxes h, follow immediately from (4.25). In computing 
@j/at)& one might use a parabolic formula using either (jde3/2, j,- ,,*, j,, ,,2) or 
(jd-*/*,jd+L/*,jd+3/2 ), depending on centering, or could numerically fit thefs with a 
cubic spline and then use the spline-derivative formula. Given j and h, the moments 
are again calculated by quadrature, as in (5.5)-(5.7). 

It should be noted tat the second-order equation (4.26) or (4.27) is essentially 
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computed along a ray, and therefore can be adepted to two-dimensional calculations 
as in Mihalas et al. [ 141. In our opinion this scheme holds the greatest promise for 
use in multidimensional geometries. 

C. Test Calculations 

We have examined some of the schemes described above for several test problems. 

1. Unattenuated Square Wave 

For this problem we shall take K =/I = B = 0, and Z+(t) = 0 at the lower 
boundary. We choose an incident intensity I- = 0 for t < 0, and I- = 1 for t > 0 with 
initial conditions j,, ,,* = 0 and h, = 0 at t = 0 (except for h, = - 4). The exact 
solution is a square wave propagating downward in the material, with j= 4 for 
s<pct and jd+,,2= 0 for s > ,uct, where s measures the distance inward from the 
boundary. 

The results from the explicit scheme with cAt/Az = 1 are shown in Figs. la-c for 
,U = 1, 0.5, and 0.25. For ,U = 1 (Fig. la), where the time step matches the space step 
exactly, we obtain a perfect square wave. For ,U = 0.5 and 0.25 (Figs. 16b and c, 
respectively) where now ,ucAt does not exactly equal the spatial step, we propagate 
the wave with the correct velocity (+ indicates nominal half-intensity point of the 

Explicit, K = 0, p = 1 

0.5 

0.4 

0.3 

.- 

0.2 

0.1 

0 

ct 
AZ 2 

1 

4 

-  
4 

6 8 

8 
AZ 

10 

I  

14 

1 
14 

16 

11 

FIG. 1. Propagation of an unattenuated square wave by the explicit scheme using cAf/AZ = 1. (a) 
/I= 1; (b)y=0.5; (c),u=O.25. 
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wavefront), but there is a substantial oscillation (+20%) behind the front resulting 
from an inadequate representation of the higher Fourier components in the square 
wave. 

The solution of this problem given by the fully implicit (backward Euler) and the 
Cranck-Nicholson schemes are shown in Fig. 2 and (b). The backward Euler scheme 
(Fig. la) gives a completely smooth solution, which propagates at the correct 
velocity. The wavefront is no longer vertical because this method does not accurately 
propagate the higher Fourier components in the square wave, and the numerical 
solution shows both a precursor, and a shoulder behind the wavefront. The 
Cranck-Nicholson scheme (Fig. 2b) also propagates the wave with nearly the correct 
velocity (it is systematically slow), and gives a slightly steeper wavefront than the 
backward Euler scheme. It also has large (&30%) oscillations beind the wavefront 
however, which would probably do violence to energy balance in dynamical 
calculations. On the whole the backward Euler scheme is the better of the two. 

For cAt/Az = 10 the explicit scheme is of course violently unstable, whereas the 
implicit schemes remain stable. Again the backward Euler scheme (Fig. 3a) 
propagates a smooth wavefront with about the right speed while the 
Crank-Nicholson scheme shows severe oscillations (+40%) which are likely unac- 
ceptable (Fig. 3b). 

2. Attenuated Radiation Front 
Hereweshalltakej=h=Oatt=0,Z+r0,andZ~=Ofort~OandZ~=l for 

t > 0, but now set K = 0.1 so that the optical-depth step between mesh points is 
AT = KAZ = 0.1. Again, we set /I = B = 0. We thus have a propagating attenuated 
radiation front. The exact solution is j = O.Se-“” for s < ,uct and j = 0 for s > ,uct, 
where s measures the distance inward from the boundary. 

Results from the explicit schem are shown in Figs. 4a-c. For ,u = 1 (Fig. 4a) we 
again obtain a perfectly sharp wavefront, with a very low-amplitude oscillation 
immediately behind the front; the oscillation rapidly dies out behind the front and the 
solution approaches the correct limiting result as t-t 00. For p = 0.5 and 0.25 
(Figs.4b and a, respectively) the behavior is qualitatively similar, though the 
wavefront is no longer sharp and vertical; it still propagates with the correct velocity, 
however, and approaches the correct result as t -+ co. 

Results from the implicit schemes are shows in Figs 5a and b. The front propagates 
with the correct velocity (of the half-intensity point) in the backward Euler scheme 
(Fig. 5a), but has a substantial precursor and a shoulder behind the front. In the 
Cranck-Nicholson scheme (Fig. 5b) there are again unacceptably large oscillations 
behind the front and a systematic lag of the front behind its nominal position. 

3. Irradiated Grey Atmosphere 
Here we shall take a grey atmosphere in radiative equilibrium, which has an unper- 

turbed mean intensity .Zgrey(r) that is computed by solution of Eqs. (4.15) (4.16) 
without the time-dependent terms and using a thermal-source term given by 

B(t) = 3H[r + q(r)], (5.27) 
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where q(t) is the Hopf function, and a constant flux H = 1. For t > 0 we iradiate the 
atmosphere with an intensity I- = I,,, and follow the time-variation of the internal- 
radiation field using a three-point double-Gauss angle quadrature. We hold Z?(r) 
fixed, so that the atmosphere is not in energy equlibrium. 

The incident intensity propagates inward such that for s < ct, 

Z-(u) = I, exp(-m/p) (5.28) 

for (s/et) <p < 1, and Z-(L) z 0 for s > ct. This inward intensity gives rise to the 
following changes in the moments: 

and 

AJ(s) = QZ,[E*(KS) - (s/et) zqkct)] (5.29) 

AH(s) = - ~Zo[E&cS) - (S/Ct)*E3(KCt)] (5.30) 

for s < ct, and AZ = AH = 0 for s > ct, where E,(x) is the exponential integral of 
order n. The complete solution is then J(s) = Jgre, + AJ and H(s) = 1 + AH. 

Results from the backward Euler scheme are shown in Figs. 6-8; in all cases we 
used cAt/AZ = 1. We have calculated the exact time-dependent solution using 
Eqs. (5.29), (5.30) for the case where I, = 1. These solutions are plotted (---) in 
Figs. 6a and 7a along with the time-dependent solution of Eqs. (4.15), (4.16) (-). 
Considering the use of the first-order equations, the accuracy of the solutions is 
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remarkably good. The 0th moment J is accurate to better than 1% throughout most 
of the optical-depth range, while the average error in H is ~2% except for very early 
times. For both J and H, the computed solutions track the exact solutions quite 
closely without the significant precursor that was in evidence in the propagation of 
the unattenuated square wave. In Fig. 7a, the net flux near the boundary decreased 
for I, = 1, and becomes negative for I, = 100 (Fig. 7b), because I(-,D) > Z(+,U) in 
that case for 7 < 2. If one were to solve the energy balance equation as well, the 
atmosphere would finally adjust to a state in which J(t) > JBrey(r), but H(t) would 
again be identically unity. In Figs. 8a and b, one sees how the intensity for small 
values of ~1 approach their final values only at much later times than for ,U z 1; this is, 
of course, expected because the radiation can penetrate only into a distance of 
S <,uct at time t. Because the components near ,U = 1 are weighted more heavily in K 
and H in J, this result implies that the atmosphere responds more rapidly dynamically 
(i.e., in pR and in the radiation forces, proportional to the flux) than energetically 
(energy balance being determined by J). The effect is mitigated, however, when the 
material is actually allowed to heat because energy input is re-radiated in all 
directions by the heated material. 

4. Velocity Effects in a Moving Atmosphere 

To study the effects of velocity fields we considered a time-independent grey 
atmosphere with an imposed velocity field. The equations to be solved follow from 
Eqs. (4.15) and (4.16) and are 

,u$=j-B-,u@h 

and 

pg=h-@(j+3B). 

To begin we choose p = 0, and solve the grey-atmosphere problem, using a three- 
point double-Gauss angle quadrature, to find B. The atmosphere has a logarithmic 
optical-depth mesh with several (-10) points per decade. In practice this is done by 
solving the second-order system. 

,a2(8j/&') = j -J, (5.33) 

imposing the condition of a fixed flux (H = 1) at the lower boundary and using the 
Rybicki elimination scheme. Then B rJ as obtained from Eq. (5.33). With this value 
of B we shall perform a formal solution of Eqs. (5.31) and (5.32) to obtain the 
moments J,, H,, and K, in the stationary atmosphere. Ideally one has H, = 1, 
J,, = 3 [t + q(T)], and K, = r + q(w). 

Knowing B, we can solve Eqs. (5.3 1) and (5.32) for p # 0, and then determine J, 
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FKJ. 6. Mean intensity in an iradiated grey atmosphere. Backward Euler scheme with 
cAt/AZ= 1. (a) I,, = 1; (b) I0 = 100. (---), exact solution. 
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FIG. 7. Flux in an irradiated grey atmosphere. Backward Euler scheme with cAf/AZ = 1. (a) 
I, = 1; (b) 1, = 100. (---), exact solution. 

H, and K from j(,~) and /Z(U). As a test, we can set /3 = constant, in which case J, H, 
and K should be related to Jo, H,,, and K, by the Lorentz tranformations 

JL = Jo + 2PH,, (5.34) 

HL = Ho + NJ, + K,), (5.35) 

and 

KL=Ko+2PHo. (5.36) 

Notice that these equations imply a large change between H, and for r 9 1, because 
both Jo and K, % Ho at depth. For t -+ 1, J,,, H,,, and K0 all are of the same order of 
magnitude, and the velocity-induced changes are thus O(J). 
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FIG. 8. Angular distribution of specific intensity at selected optical depths in an irradiated grey 
atmosphere. (a) I,, = 1; (b) I, = 100. 

A quantitative estimate of the importance of velocity-induced effects is given by the 
ratio 

6, = (X - ~OYX, (5.37) 

and of the accuracy of the solution by 

6, = @ - &)l@ - &), (5.38) 

where X stands for J, H, or K. 
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FIGURE 8 (continued) 

Results for relative change in the flux 6H in a uniform flow with /3 = .Ol are 
presented in Figs. 9a and b. In Fig. 9a, we see that the inclusion of v/c terms in the 
transfer equation leads to an increase of 0.03 in iY at the surface and remains fairly 
constant to r z 1. As expected from (5.35), on the range r= 1, to t= 100 there is a 
substantial rise in 6, caused by the large rise of J and K with depth. Inclusion of v/c 
terms thus leads to large increases (400%) of the flux compared to the static flux H,. 
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of 5. (b) cH = (H - H,)/(H - H,) as a function of T. 



134 MIHALAS AND KLEIN 

Inspection of the accuracy of our computed solution (Fig. 9b) reveals that we make a 
25% error at the surface where the velocity-dependent effects are small (-3%) but 
only a negligible error (<l%) at depth where the velocity-induced effects are very 
significant (-400%). 

Under the assumption of a uniform flow between the fixed and comoving frames, 
the calculation of the Lorentz transformation of the integrated moments 
(Eqs. (5.34)-(5.36)) provides a powerful check on our formulation and solution. 
Indeed, for the case of constant j? the Lorentz-transformed moments in the inertial 
frame agree to Op) with the computed moments at the surface. At great depth 
(r $ l), the agreement is <O(j?). We have verified this by calculation with several 
values of p. For the case of j? = 0, the solution yields 6, < lo-’ as expected. For the 
variable a case, a preferred frame no longer exists and a simple Lorentz transfor- 
mation can no longer be used to relate the two frames. Calculations show that the 
computed moments and the Lorentz transformation do not agree to O(J). 

VI. COUPLING TO HYDRODYNAMICS 

In this section we shall briefly sketch how the transfer equation including O(v/c) 
terms might be coupled to the hydrodynamic equations. 

A. Eulerian Formulation 

In a Eulerian formulation we can write the continuity, momentum, and energy 
equations for one-dimensional flow in conservation-law form as 

= -p&? + F c wk $(Bk - Jk), 
k 

and 

+$ 

N 1 = --&VP, 

(6.2) 

where fk z Kk/Jk is a variable Eddington factor (presumed known) and k denotes a 
frequency group. These equations are coupled to the transfer equations 
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(k = l,..., K) (6.4) 

and 

1 aH, -- 
c at 

+ wiJk> ~ = +ck H, + &dfkJk + &) 
C?Z 

(k = l,..., K). (6.5 1 

If we center the variables v and F, on slab interfaces and p, e, and J, at slab 
centers, Eqs. (6.1) - (6.5) can be discretized into a nonlinear set of algebraic 
equations. To solve the system we linearize around an approximate solution. The 
resulting is then block tridiagonal, with blocks of dimensions (K + 3) x (K + 3). The 
computing effort required to solve the system scales as c(2D)(K + 3)3. Both the setup 
and solution is vectorizable. After applying the corrections just obtained to all 
variables, one can carry out a formal solution for all angles and frequencies by 
solution of Eqs. (4.15) and (4.16) both to update the radiation field and to obtain new 
variable Eddington factors. The effort to effect this solution scales as cDMK, 
(M = number of angles). The linearization can then be iterated to convergence. 

B. Lagrangian Formulation 

For one-dimensional flowit is convenient to use Lagrangian variables. Thus writing 
dm = -p dz as the mass measured inward into medium, the momentum and energy 
equations become 

Dv 
-=-g+g++x w~K~F,-+/~~ w~Ic~J~(I +fk) 
Dt (6.6) 

k k 

$+P; (~)=4n~KkWk(Jk-Bk)-y1(4n)?:w,h-,Hk. 
k 

(6.7) 

Provided we can solve the transfer equations in the Lagrangian frame, these equations 
can be solved by the standard Lagrangian leapfrog scheme, where v is centered at 
tntl’*, and other variables (including radiation) are centered at t”, tnt ‘. Thus if we 
know p”, J”, F”, etc., we can advance (6.6) from t”-‘j2 to t”t”2. Using v”“” we 
calculate a new spatial mesh Z”+’ at t”+’ and, hence, new densities p”+‘. We then 
must solve (6.7) implicitly with the transfer equations at t”+‘. 

To obtain a Lagrangian form of Eq. (4.15) we add and subtract P(j,/aZ) from 
(l/c)(aj,/&), and use the equation of continuity to finally obtain 

(6.8) 
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Similarly, for (4.16) we find 

-+ $ (h,/p) - & l&j, - @zk) = - + + + (j, + 3B,). 

The corresponding moment equations are 

and 

(6.9) 

(6.10) 

(6.11) 

Given estimates of the Eddington factors, Eqs. (6.10) and (6.11) are to be solved in 
parallel with the energy equation (6.7) at the advanced time level t”+‘. Again the 
nonlinear system can be linearized to yield a block-tridiagonal system. After the 
resulting corrections are applied to the current variables, Eqs. (6.8) and (6.9) are used 
to carry out a formal solution that gives new Eddington factors. The process can then 
be iterated to convergence. 

The Lagrangian formulation may have important application to the solution of 
time-dependent neutrino transport during the gravitational collapse of a stellar core 
resulting in a supernova explosion. To date, the most complete solution to this 
problem uses a P - N method with flux-limited diffusion in the fluid frame [ 11. These 
solutions are costly to compute and introduce several approximations through use of 
ad hoc flux limiters as well as leaving out possibly significant V/C terms. In the 
supernova explosion, v/c = 0.15 is typical. Our equations become the equations for 
neutrino transport when the appropriate modifications to the emission and total 
absorption are made. If conservative scattering is reasonable approximation, our 
method may provide a more efficient solution with full retention of v/c terms and 
accurate variable Eddington factors. 

This document was prepared as an account of work sponsored by an agency of the United States 
Government. Neither the United States Government nor the University of California nor any of their 
employees, makes any warranty, express or implied, or assumes any legal liability or responability for 
the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, 
or represents that its use would not infringe privately owned rights. Reference herein to any specific 
commercial products, process, or service by trade name, trademark, manifacturer, or otherwise, does not 
necessarily constitute or imply its endorsement, recommendation, or favoring by the United States 
Government or the University of California. The views an opinions of authors expressed herein do not 
necessarily state or reflect those of the United States Government thereof, and shall not be used for 
advertising or product endorsement purposes. 
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